An international mega-science project

The Deep Underground Neutrino Experiment (DUNE) is a leading-edge, international experiment for neutrino science and proton decay studies. Discoveries over the past half-century have put neutrinos, the most abundant matter particles in the universe, in the spotlight for further research into several fundamental questions about the nature of matter and the evolution of the universe — questions that DUNE will seek to answer.


DUNE will consist of two neutrino detectors placed in the world’s most intense neutrino beam. One detector will record particle interactions near the source of the beam, at the Fermi National Accelerator Laboratory in Batavia, Illinois. A second, much larger, detector will be installed more than a kilometer underground at the Sanford Underground Research Laboratory in Lead, South Dakota — 1,300 kilometers downstream of the source. These detectors will enable scientists to search for new subatomic phenomena and potentially transform our understanding of neutrinos and their role in the universe. The Long-Baseline Neutrino Facility will provide the neutrino beamline and the infrastructure that will support the DUNE detectors.

Aiming for groundbreaking discoveries

Origin of Matter


Could neutrinos be the reason that the universe is made of matter rather than antimatter? By exploring the phenomenon of neutrino oscillations, DUNE seeks to revolutionize our understanding of neutrinos and their role in the universe.

Unification of Forces


With the world’s largest cryogenic particle detector located deep underground, DUNE can search for signs of proton decay. This could reveal a relation between the stability of matter and the Grand Unification of forces, moving us closer to realizing Einstein’s dream.

Black Hole Formation


DUNE’s observation of thousands of neutrinos from a core-collapse supernova in the Milky Way would allow us to peer inside a newly-formed neutron star and potentially witness the birth of a black hole.

How does the experiment work?

Watch this two-minute animation…